User manual

SEATH_GUI

Author:

Prashanth Reddy Marpu Working Group Photogrammetry/Geomonitoring Institute of Mine-Surveying and Geodesy Freiberg University of Mining and Technology Fuchsmühlenweg 9, D-09599 Freiberg, Germany

prashanthmarpu@ieee.org

Introduction:

Object-based image classification is a promising methodology as it is close to human perception. A typical object-based classification system starts with segmenting the image into smaller homogeneous regions (or image objects). These objects correspond to approximations of real-world objects. Every object is characterized by several features defined based on layer values, texture, shape and context of the object. With a few input samples for every class, it is possible to identify which of the features can be utilized to make rulebases (Nussbaum et al, 2005, Marpu et al, 2008). The Jeffries-Matusita distance, J (or the Bhattacharya distance, B) calculates the statistical measure of separability for ever class combination and for every feature under test. The values of J lie between 0 and 2. If the value of J is close to 2, the feature has the best separability and can be used to distinguish the classes under test. Moreover, We can also identify an approximate threshold of separation between the two classes based on Baye's rule

References:

Marpu, P.R., Nussbaum S., Niemeyer I. & R. Gloaguen (2008): A Procedure for automatic object-based classification. In: Blaschke, T., Lang, S. & G. Hay (ed.) (2008): *Object-Based Image Analysis Spatial Concepts for Knowledge-Driven Remote Sensing Applications*. Series: Lecture Notes in Geoinformation and Cartography. Springer, Berlin

S.Nussbaum,I.Niemeyer,M.J.Canty (2005): Feature Recognition in the context of automated object-oriented Analysis of Remote Sensing Data monitoring the Iranian Nuclear Sites, SPIE 2005 Optics/Photonics in security and Defence

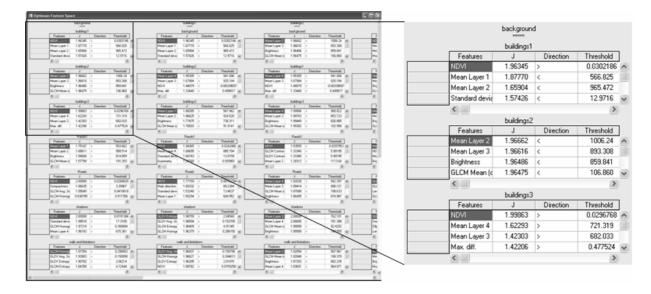
Software:

The Photogrammetry/Geomonitoring Working Group at Freiberg University of Mining and Technology (TU Bergakademie Freiberg) holds all rights concerning the software. The software is free to distribute and works only with the freely available IDL Virtual Machine. The IDL VM can be downloaded from

http://www.creaso.com/english/12_swvis/11_idl/idlvm.htm

The GUI to visualise the separability and thresholds is programmed and compiled in the IDL version 6.1 environment. IDL is a commercial integrated software development environment and is a product of ITT visual information solutions.

Usage:


There are two versions of the program

- 1) SEATH_GUI, which only displays the results
- 2) SEATH_GUI_1, which no only displays the results but also stores the results in *.csv files for every class combination

The software is exclusively made to deal with ObjectStatistics file provided by the Definiens software.

The process sequence is in the following order:

- 1) Segment the image.
- 2) Create the class hierarchy
- 3) Collect samples by using the manual classification option in Definiens software
- 4) Using the process algorithm 'Export Object statistics', export the statistics of the samples for all the classes to be tested.
 - a) Do not select the parent classes.
 - b) Select the features you want to test for separability
- 5) The ObjectStatistics.csv file is the input to the SEATH_GUI program.
- 6) The results in the GUI are sorted with the best feature at the top.

